iSPP International Conference in Sendai A Ballooned Wireless Mesh Network for Disaster Response

Yoshitaka Shibata* and Saneatsu Arimura and Noriki Uchida** *Iwate Prefectural University, **Saitama Institute of Technology Japan

July 22, 2012

Background

- East Japan Great Earthquake in March 11th in 2011 caused sever damage over the wide area of Northern Japan.
- 5,841 persons died and 3,490 are missing due to the great tsunami
- The tsunami destoryed power supply, information systems and communication lines on the ground
- It is strongly required to quickly reconstruct emergency network
 - to recover from disorder
 - to provide urgent hotspot at evacuated places
 - to connect to Internet and regional intranet
 - to provide information services for evaluated residents

Background

Advantages of WLAN as disaster information network are

- Robust in case of disaster and less failure
- No cable disconnection,
- Quickly reconstruct network and establish the emergency information system just after occurrence of disaster
- Mobile communication environment using vehicles with WLAN to organize adhoc network

Disadvantages

- Limited Communication range : Max 2~5 Km (for IEEE802.11b/g)
- Signal distortion by influence buildings on the ground

Therefore, by installing WLANs to balloons and by multi-hopping those in the sky over ground, more useful disaster information can be realized

Introduction of Ballooned Wireless Mesh Network

- Both backbone and access networks can be established by multiple mesh pints
- In horizontal, backbone network can organize an adhoc network, while in vertical, each mesh point can support multiple MTA access
- Thus, mesh network can deploy as a temporal emergency network covered on the disaster area by installing to balloons

Purpose

- To construct wide-area wireless mesh network by combining balloons and Wireless mesh network(BWMN) for disaster information network :
- To prototype BWMN system using conventional commercially available WLANs such as IEEE802.11b/g/j
- To evaluate performance the BWMN prototype
- To offer various information service applications useful when disaster happened
 - WIde-area Disaster Information sharing System
 - Wireless IP telephone network
 - Ballooned wireless video surveillance network

BWMS as Disaster Information Network

Combination of Balloon and BWMS and multi-hopping

Prototyping Two BWMS

- Although IEEE802.11s is standardized for mesh network, there is no commercial product
- We prototyped two BWMSs using current available standard LANs with different antennas
 - Type 1: combination of IEEE802.11j + IEEE802.11b/g
 Type 2: combination of IEEE802.11b + g

Characteristics of Type 1 BWMN

1) Horizontal (Back bone network)

- Standards: IEEE802.11j
- Power: 250mW
- Data Transmission: 54Mbps
- Antenna: 6 directions plane antenna (covered 360°)
- Adhoc function : Automatic Network configuration with minimum spanning tree according signal power

2) Vertical (Access network)

- Standards: IEEE802.11b/g
- Power: 10mW
- Data Transmission: Max 54Mbps
- Antenna: co-linear antenna

System Architecture

Antenna Direction of Type 1

Characteristics of Type 2 BWMN

1) Horizontal (Back bone network)

- Standards: IEEE802.11g
- Power: 10mW
- Data Transmission: 54Mbps
- Antenna: 2 directions patch antennas (covered 180°)
- Adhoc function : Automatic Network configuration with minimum spanning tree according signal power

2) Vertical (Access network)

- Standards: IEEE802.11b/g
- Power: 10mW
- Data Transmission: Max 54Mbps
- Antenna: plane antenna

Ballooned Wireless Mesh Network Node

Performance Evaluation of Type 1 BWMN

- Evaluation of transmission propagation characteristics
- Horizontal Direction (IEEE 802.11j, 4.9GHz) and Vertical Direction (IEEE 802.11b,g, 2.4GHz) with various parameters:
 - distance,
 - height difference,
 - signal power,
 - the No. of hoppings
 - antenna direction
 - wind influence

Transmission Characteristics: Type 1 BWMN Horizontal (4.9GHz), Vertical(2.4GHz)

Result of Propagation Characteristics: Type 1 BWMN Horizontal Direction vs. RSSI and Packet Arrival Rate

40

Distance vs. Ave. RSSI [dB] Sending Signal Power: 250mw

35 -6Mbps 30 18M bps RSSI [dB] 25 24M bps 20 36M bps 15 — 48M bps 10 54M bps 5 0 50 100 150 200 250 300 387 500 600 650 Distance (m) 120 S 100 - 6M bps [>]acketArrivalRate 80 — 18M bps 24M bps 60 36M bps **★** 48M bps 40 — 54M bps 20 0 50 100 300 387 150 200 250 500 600 650 Distance (m)

Distance vs. Packet Arrival Rate [%]

Sending Signal Power: 250mw

RSSI: Received Signal Strength Indicator)

Result of Influence of the Number of Hopping : Type 1 BWMN

Throughput (Mbps)

vs. Response Time (ms)

Result of Influence of Shaking Access Point: Type 1 BWMS

Throughput (Mbps) when Shaking

 Shaking strongly sender and receiver AP by hand equivalent to 10 (m/s)

Performance Evaluation of Type 2 BWMN

- Evaluation of transmission characteristics
- Horizontal Direction (IEEE 802.11b,g, 2.4GHz) and Vertical Direction (IEEE 802.11b,g, 2.4GHz) with various parameters:
 - communication distance,
 - height difference,
 - antenna direction

Result of Propagation Characteristics: Type 2 BWMN Throughput vs. Horizontal Distance for different antennas

Result of Characteristics: Type 2 BWMN Throughput & Packet Loss Rate vs. Horizontal Distance

Performance Evaluation of WIDIS

Safety Information Disaster Information Lifeline information

Result:

50 users could access to WIDIS Server without performance degradation

Wide Area Disaster Information Sharing System

Performance Evaluation of Three Different Applications on BWLAN

We developed three difference disaster applications

- WIde-area Disaster Information sharing System based on Web GIS (WIDIS)
- Wireless IP telephone network
- Ballooned wireless omni-directiona video surveillance System

Performance Evaluation of Mobile IP Phone by BWLAN

Good voice quality
within 240 msec time delay

Performance Evaluation of Realtime Video Streaming by BWLAN

Video Transmission from Disaster Area

Realtime Video Streaming System over BWMN

Camera Control by Remote Operation

🏭 Sec Mon

- サー/	第1接続
	100130076

終了

Result of Video Transfer Function

Video image	Omni-Directional	PTZ camera
Size	800×250	320x240
Format	WMV	WMV
Req. BW	2 Mbps	1 Mbps
Frame Rate	10~15	10~15

Concluding Remarks and Future Works

Conclusions

In order to realize robust wide area disaster information network,

- introduced ballooned wireless mesh network
- prototyped two types of BWMN using conventional standard wireless LAN such as IEEE802.11b,g,j
- Evaluated performance of throughput, packet loss rate for both BWMSs
- Also evaluated the performance of disaster applications, including Web GIS, Wireless IP Phone and Video.
- Through the performance, verified the usefulness
- **Future Works**
- Stabilization of Balloon in the sky against strong wind
- Simple operation miniaturization of Balloon with small number of person
- Introduction of autonomous disaster information network

Autonomous Disaster Information Network

Thank you for your attention

Quick Recovery Requirement from Failure

System functionality just after disaster is critical

Long Distance Wireless Network

	WHAN IEEE802. 11b,g	HWAN IEEE802.1 1n	WiMAX IEEE802. 16e	W Access IEEE802. 11j	Subscribe d Wireless	Personal Wireless	3G Cellular Phone
Freq.	2.4GHz	2.4GHz	~5GHz	5 GHz	22~38GH z	1.2GHz	800 MHz
MAX. Speed	11, 54Mbps	300Mbps~	75Mbps	54Mbps	165Mbps	128Kbps	1.2Mbps
Sig. Power	10mW	10mW		250mW		10 W	250mW
Max Distance	~5Km	~5Km	10Km	30Km	4Km	20Km	10Km
License	Not Required	Not Required	Required	Registere d	Required	Required	Not required